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PRINCI OF TOMOGRAPHICAL IMAGING WITH LIMITED-ANGLE INPUT 

K. C. Tam and V. Perez-Mendez 

boratory, ey~ California 94720 

Radiology Department, University of California, 

San Francisco, lifornia 94143 

The theory tomographical imaging with limited-angular 

input is discus , from which two reconstruction algorithms are 

derived. The exi missing information due to incomplete 

angular coverage is demonstrated. and an iteration gorithm to 

recover s information from a priori knowledge on the finite 

extent of the object developed. Smoothing algorithms to stabilize 

recon ons in the presence of noise are given. The effects 

of digi 

in numeri 

ion and finite truncation of the reconstruction region 

computation are also analysed. It is shown that the 

limited-angle problem is governed by a set of eigenvalues whose 

spectrum is determined by the imaging angle and the finite extent 

of the obj The distortion on a point source caused by the 

missing information is calculated; from the results some pro-

pe ies 

derived. 

the iteration scheme, such as spatial uniformity, are 

This manuscript was printed from orig·inals provided by the author. 
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I. INTRODUCTION 

ology and nuclear medicine imaging, information on 

bution of an obj is usually inferred from 

the on transmitted through or emitted from the object. 

ch 

sion 

medi imaging, known 

ssion tomography, ly involve 

y as transmis­

lecti the 

on 

les, or 

the obj di 

while viewing the 

es of discrete es, 

bution from the data. 

from a continuous range 

then reconstructing 

Obj distributions can 

be two-dimensional, such as in ring positron cameras [1] and x-ray 

scanni (para11 beam or fan beam geometry) [2,3], as shown in 

gure 1, or three-dimensional as in planar positron cameras [4) 

and pinhole imaging devices [5], as shown in Figure 2. Similar 

techni so been employed in other non-medical imaging 

situations, such as ectron microscopy, r·adioastronomy, etc. In 

this we investigate the relationship between the angular 

range 

obj 

the input data and the possibility of reconstructing the 

distribution completely. We 11 be dealing with objects 

and 

' digi 

requirement 

the limitations 

on a ni ng grid. This is a 

the nite resolution of a11 

the computation techniques. 

on II the basic imaging problem is formul as a 

con equation, r with two gorithms tackle it: 

one i ving compl deconvolution and the other parti 
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ution. The a ion of undetermined Fourier 

in limited-angle imagi is shown in on III. 

on IV deals gi on finite trunca-

tion, whereas Section V treats the stabn ity problem in the two 

reconstruction methods. In Section VI possibility of recov-

ng the undetermined Fourier components is discussed and two 

iteration to achieve this purpose are proposed. In 

on VII the the er components on a 

poi source are uated; from these further properties 

of the i on schemes are derived. In on VIII the two 

reconstruction algorithms are compared, and some concluding 

remarks are given in ion IX. 

II. BASIC EQUATION AND METHODS OF SOLVING 

We 

cone to 

1 take the line at the center of 

the s. Due to the symmetry 

measured data 

the x and y axes 

in most cases, we shall wri out only the x-axis explicitly and 

the y coordi in most of the mathemati treatment 

and gures in order litate presentation. 

In emission imaging~ each point source in an object distri-

on a ux gamma rays at each ion in space. 

The ux 

sented by 

r due to a point source ra can be repre-

a ar d ¢0 r ra) from the recorded 

emitted by the point source in the ·1 imi t where the number 

such events becomes large, Hereafter we shall refer to ¢0 as 
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the point response on. Point response functions can be con­

in a The simplest way is to count 

traverse a small area element ori-

at a icular angle at each 1 on in space~ as shown 

in gure 3. This approach ds the conventional back projec-

on tomograms. To generalize, one can weight emission event 

as a function the angle between the event and a xed ion. 

ar weighting can improve the signal se o in the 

in those imaging devices where the error distribution in the 

an angular dependence. For example, noise in a planar 

positron camera due to Compton scattering concentrates in the small 

e region [6], and therefore could be reduced by any angular 

weighting which emphasizes the large angle events. 

The tant effect r due to 1 the point sources in 

the object bution p 1
) is a scalar field~(~) which is the 

linear superimposition of the flux generated by all the point 

sources thin p r 1
), i.e. 

this equation it is assumed that the same angular weighti 

has employed in ng ~ and ~ 0 • 

the case transmission imagi , each volume ement 

the intensity the x=ray beams exponenti ly, and 

(1) 

the attenuation is the product of the individual attenuations. 
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Since k·lng logarithmic function converts a product into a 

sum. on ( 1) a 1 so ho 1 in the case transmission imaging 

quantities ~ and ~ 0 are constructed from logarithmic 

function attenuation in the appropri directions. Equa-

tion (1) is the basic equation relating the data to the 

object distribution in imaging. 

As it ds, Equation (1) is di cult solve in general. 

However. if is 

then Equation (1) becomes 

Sol ng p (r:J is simp 1 i considerably since ous methods 

solving i equations with a kernel 

deve 1 oped [ 7]. complete-angle imaging 

such form have been 

A, is 'l'o ways 

invariant. In the limited-angle case. 4J 0 can be made space­

invariant by using only those events falling within a universal 

cone~ which is the intersection of the detection cones subtended 

by a11 point sources in the object. Further discussion on the 

construction of ~ 0 and i space-invariance can found in 

[8]. 

The solution of the two- or three-dimensional integral 

Equation (2) as a matrix equation on a digital computer requires 

a large amount of computation and core memory. A more practical 

approach is to Fourier transform the equation to frequency space. 
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As shown in [7]~ the transformed equation is diagonal, so the 

integral on reduces an gebraic equation, 

where 

~0 k ~ J¢0 (!)exp(2Tii!·!)d3r 

~ k ""}¢(!) (2Tii~: d 

The ution is given by 

p 

where 

~k) if ~ (k) ~ 0 

R k --~--~(3c) 
{ 

~ 0 (k) 0 

~ undetermined if ~ 9 (k) = 0 
(since here Equat1on (3a) becomes 0 = 0) 

If we Fourier transform Equation (2) only in the x dimension, 

we get the one-dimensional integral equation 

------~ {4a) 

where 
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p 

1(kx.z) = £:~(x )exp(2wikxx)dx 

p( ) = f00p(x.z)exp( ) 
~oo 

on is given by 

p( .z) = I 
i 

a;. 9; are genvalues and eigenfun ons of the integral 

) 0 

ons (3) ( 4) repr·esent two methods of ving for 

former solves for the unknown R(kx.kz) in frequency 

and then inverse transforms in the kx and kz dimensions back 

object • whereas the latter tackles the problem in the kx 

lowed by inverse transformation in the kx dimen-z 

sion. in the per we 1 to these methods as 

deconvolution method [8.9]. and matrix method [10], 

, since the imensi i equation (4a) 

a matrix equation when ved on a digital compu 

III. THE OPTICAL TRANSFER FUNCTION AND THE UNDETERMINED 

FREQUENCY COMPONENTS 

the object uniquely using the 



on method from Equation ( )~ all the frequency 

cal on w
0 
(~} must be non-zero. 

x method~ ng irement is that the 

i in ( zero eigenvalues [11]. 

when (i) the of 

i i ved covet" 1 ( i i) point 

on a compl To show 

s, we the opti tran 

·in transmission emission imagi 

(Equation (5)), we make the followi coordinate 

on: 

x ) + r(e,z) 

mentioned in on II~ general point re func-

on (x,z) is defined as the number of events, emi from the 

source, which s through a line segment of unit length 

a n angle, perpendicular z-axis for 

weighted by a factor F(e) dependi on 

e e makes the s. F ( e ) is positive 

insi cone and zero case F (e) 1 inside 

cone the conventional tomograms obtained from back-
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projecting the . For z ; O~ consider a line segment dx 

nting along the s centered at (e,z) relative to the point 

source ( g. 4a) 

Thus 

" ( 5) 

Equation (5) shows that ~ 0 (e,z)!zl is a on of e only. This 

ress ion is id also z 0. The opti sfer function 

is 

~ 0 ( ,k2 ) ~ foodz foodx~ 0 (x~z)exp(2Tii(kxx + kzz)) 
-oo -oo 

-~(6) 

Performing this integral (Appendix A) we get 

Fi 4b shows schematically the shape of the two-dimensional 

optical tran function. Three-dimensional point response func-

tions and optical functions are treated in Appendix B, 
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and the result (B.3) for the pyramidal ¢
0
(I) is illustrated in 

Figure 5. Figures 4b and 5b show that if ~ 0 does not have a 

compl angular there are ons in frequency space 

where ~0 (~) is zero, and thus R(~) cannot be recovered by the 

deconvolution method from Equation (3). The necessary and suf-

ficient conditions for compl angular coverage for a three-

dimensional poi response function ¢
0 

have been given in [12]. 

Hereafter we sha l1 the on where ~ 0 (t) ~ 0 as the 

11 allowed cone 11 and that where ~0 k = 0 as the ''missing coneu, 

respectively. 

The existence of the missing cone can also be shown in a 

simple way using the projection theorem [13], ~'lhich states that 

the one-dimensional Fourier transform of the projection P(r,e) of 

a two-dimensional function gives the components of the two-

mensional Fourier sform of the function on a line at angle 

(e + ~/2). Now it can be shown easily from Equation (5) that the 

total integrated intensity of ~ 0 (x~z) on any line which intercepts 

the detection cone completely is a constant independent of the 

ition the line, This means that the projection P(r,e) 

¢0 (x,z) is a constant function in r fore (= tan- 1 (x/z)) is the 

range (e 0 ,~~e 0 ), and therefore its Fourier transform is a delta 

function the origin. 

In the case the matrix method, we aim that the integral 

operator (4a) does have zero as i eigenvalue for every value of 
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H <Po does sess compl angular coverage. First we 

show { i k2z)} is the of genfunctions the inte-

ng p(kx~z) - ik 2z)~ i 1 

becomes 

00 

f ':f0 ,z-z' )exp( -~2ni 1
) 

00 

Thus { (-2ni )} is the of eigenfunctions of the i 

ope wi 

shown ~o has zero components if it does not possess complete 

angular nee the eigenfunctions forrn a complete 

the 1 uti on the integral equation (4a) is 

where coefficients C(kx,kz) are given by 

[Jf(kx,z)exp(2nik2 z) ~(kx,kz) 
"~~~Yz~~"~"' ~J"kx,kz) ' 

C( ) = 

The ution p(x,z) in obje is obtained by inverse trans-

fon~ing p(kx,z) in 

result is i 

as expected. 

kx dimension, and it can be seen that t 

that obtained by the deconvolution met 

11 



It follows that p(x,z) cannot be determined uniquely using 

either the deconvolution method or the matrix method represented by 

Equations (3) and (4), respectively, if the point response func­

tion does not have a complete angular coverage and no further 

information is available. 

IV. EFFECTS OF DIGITIZATION A~D FINITE TRUNCATION 

cal imaging situations, due limi on in 

detector resolution and digital computation, object distributions 

are always analysed on a finite grid of points with finite spac­

ings ~x, ~z. Besides limiting the frequency range to 

l 1 

digitization also changes the shape of the point response function. 

As mentioned in on III, the vanishing of ~ 0 (kx,kz) in the 

missing cone is due to the property of ¢0 (x,z) as expressed in 

Equation (5). However, if ~0 (x,z) is digitized, Equation (5) is 

no longer applicable, and hence part or all of the zero values in 

the missi cone non-zero, as shown in the detailed analy-

sis in Appendix C. The result of this analysis shows that the 

undetermined components of R(~) are iminated if sampled in the 

X z dimensions. For matrix method, the eigenfunctions 

with zero as eigenvalue are also iminated in a corresponding 

manner. other words, digitization makes it possible to 
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reconstruct distributions compl 

Another limitation imposed by gi computation is that 

reconstru ons can only performed in a ni on s 

of finite dimension lx x lz. As a consequence~ the point response 

function becomes 

(2) is no longer a 

ce variant 

uti on, 

so integral in Equation 

introdu some er·ror into 

the solutions obtained the deconvolution or matrix methods. 

However, if le bf the ion cone 

sions Lx, are such that the detection cones generated at every 

point in the obj do not intersect vertical edges of the 

recon ion region.as illustrated in Fi (6), the space in-

var·iance ¢
0 

in x dimension is preserved, That means the 

convol on ation in the x dimension is ill valid~ and so 

the matrix method solution remains 

Besi s the discreteness in resolution, the data in some 

imaging devices are taken in a number of discrete angles. It is 

well known that an obj cannot be reconstructed from a finite 

number of projections. However9 if a priori information is evoked, 

only a negligible amount information is lost if the angular 

sampling is dense enough. This point will aborated in more 

il in Section VI. 

V, INSTABIL I 

shown in Section IL each Fourier component <ll(kx,kz) of 
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the data ~(x,z) is multiplied by the factor l/~0 (kx,kz) in decon~ 

volution; in the matrix method, each eigenfunction component is 

also amplified by the factor l/(eigenvalue). As a result, insta~ 

bilities arise where the ~ 0 (kx,kz)
1 s or the eigenvalues are small. 

One way to minimize these stabilities is impose on the 

solution the smoothness condition adopted by Phillips [14]: 

For deconvolution, the net effect of this smoothing procedure is 

to introduce an additional term in the denominator of Equation 

(3c) as shown in [8]: 

where y(>O) is an adjustable parameter which depends on the noise 

level. This additional term is negligible at low frequencies 

compared to ~0 (~), but increases rapidly in magnitude with fre­

quency as both k4 increases and 1~ 0 (~)1 decreases. Thus the 

information low frequencies is suppressed. 

The additional term also plays a significant role in the 

missing~cone region. As shown in the previous section~ digi za­

tion makes the Fourier components ~0 (kx,kz) in the missing-cone 

region non-zero. These components, however, are very small in 

magnitude, and thus error amplification in the deconvolution 
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Equation (3c) is e ally ous in ·is ·ion. in the 

ideal case that the data •(x.z} ins no error~ error 

to the variance the point 

function arising from on alone 11 render 

the information in the missing-cone ion unreliable. The effect 

the additional rm in Equation is R(~J close to 

zero in the missing-cone region. This means that the decon-

ution method~ infonnation in mi ssi on is 

unavailable. The lack information on the missi 

components i non-uniqueness i the solution. Setti 

these missing-cone components to zero gives a minimum nann solu­

tion. a consequence of Parseva1 1 s theorem. but it is clearly not 

correct uti on. 

The of imposing the smoothness condition (7) on the 

matrix method solution is very similar to that on the deconvolu-

tion. For every value of kx, instead 

matrix equation 

Y "' AX 

solvinq the ill-conditioned 

which is the digital version Equation (4a)9 another matrix 

equation with a modifi [15] is ved: 

Y = {A + yG[ (9) 

t:,.z is the grid cing in the z direction, I is the identity 
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matrix~ G is the left generalized inverse of the matrix A, and 

the matrix C is given by 

ej "' j 

i "' 

otherwise 

VI. EFFECTS OF THE KNOWLEDGE ON THE FINITE EXTENT OF THE OBJECT 

(p(x,z) 1 0 for x1 ~ x ~ xz~ z1 ~ z ~ Zz) 

As stated in Section IV, taking data in a finite number of 

discrete angles gives rise to non-unique solutions. However, by 

making use of the fact that the object is finite in extent, this 

non-uniqueness can be removed. Klug and Crowther [16] have shown 

that for a mensional object of diameter D which is digitized 

in pixels of dimension dxd, m projections at equally spaced angles 

from 0 to n contain almost all the information required to recon­

struct the object uniquely9 where m is given,by 

m :::: nO 

The undetermined Fourier components in the missing cone can 

be recovered by making use of the knowledge on the finite extent 

of the object, a consequence of two theorems: (1) the Fourier 

transform of a finite object is an entire function, and (2) an\ 

entire function can be continued throughout the whole complex 

plane from a knowledge the function on any finite continuous 

16 



line [17]. a result~ R(kx~kz) can be continued 

throughout the k-space from a knowledge the function within 

the cone. The procedure cannot used when e
0 

~ 0, since then 

the only region in which R(!) is known is the line ~ 0 which 

therefore contains no interior poi 

The above analysis shows that 1 the infonnation on any 

density distribution nite extent is contained in i Fourier 

thin cone in wi i apex 

the ori n. This conclusion is in agreement with the fact 

that such a distribution is uniquely determined by any infinite 

proj ons [18, 19]. 

In the case of the matrix method, it is convenient to con-

si first the finiteness of the obj in the z di on, which 

is built into method, lowed by that in the x direction. 

As shown in Appendix D • the integral operator (4a) in the matrix 

method becomes positive nite when the range of integration in 

z is finite, and by [11], the eigenfunctions associated with it 

form a cornpl in the ass of functions square integrable 

in 1 .z2 ). and thus unique so1ut s the integral 

This argument breaks down if kxtane 0 = 0. Therefore, 

there is no unique solution for p(kx,z) if kx ~ 0 or 8
0 

~ 0. For 

the general case e0 > o. the only missing information is p(O.z) 

for each < z < z2 Fig. (7)). These undetermined components 

at kx "' 0 on each z-·plane can be lled in from values at kx ~ 0 

17 



on the same z-plane by virtue of the fact that p(kx,z} is entire 

) is non-zero only for 

x1 ~ x ~ ). If 80 = o. the components at kx t 0 are 

not known themselves~ not to mention the continuation to kx = 0. 

To implement the continuation process. the most direct ap­

proach would be to calculate the successive derivatives of R(~) 

at some point k0 in the al 'lowed cone to form a Taylor es ex-

pansion of R(~) which converges everywhere. In practice such a 

series has to truncated, so the error for the values of the 

es calculated at a region far away from k0 would be large. 

In addition. it is difficult to determine accurately the deriva-

tives of a function numerically. 

Another method for the continuation of an analytic function 

is by means of a prolate spheroidal function expansion [20,21]. 

The function R(~) to be continued is expanded in a series of 

prolate spheroidal function ~;(k) 

the coefficients a; being determined from the known values of 

R(~) in the allowed cone. 

A Fourier series expansion can also be used in extending the 

function to 11 in the missing cone, This method was employed 

by Harris [17] to continue a one-dimensional spectrum9 and by 

Inouye [22] to reconstruct a two-dimensional image. 
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recover· si cone components is 

i qiven 0\JI ·is Fou er 

cor're known er 

anowed cone knovm 

use 

extent of 

j 

the 

rna tical 

can 

ing on any Fourier 

A and B afe 

Af = XAf 

Bf = r- 1x8Ff 

where F l re 

verse. XAs are 9 

allowed cones 

Rb in obj 

9 

two i 

8 and 9. 

of 

e 

is 

on 

Fourier 

ing 

known nite 

are shown 

sform i 

on 

on 

two operators A and B 

on f in frequency 

n as follows: 

Fourier sformation i in-

y9 c ons of 

in Four·ier s of the object ion 

(Fig, lOL and are ned as: 



Xp,(~) "c 
k E R 
·~· a 

XB = { 1 

'0 

X E: 

li'Jith se , it can shown truncation error 

in i on is given 

(n) k ~ ( 10) 

where Ai~~i are the eigenvalues and eige ons of the operator 

BA, and ai are the ion R(~) in terms ~;~s. 

The derivation Equation (10) was given in [25]. on ( 10) 

t major source error comes from those eigenfunc~ 

tions a with the small eigenvalues which ( 1 - A i ) n 

s zero only owly with n. 

The ei lues of BA for a square-shaped object boundary 

been calculated ous half-angles 

l1. It can The resul are shown in F·i 

spectrum can roughly divi into two 

eigenvalues are close unity and the 

ose zero. i ons proceed, 

on error (n) (~) corresponding 

( ~ l) will zero very idly~ while 

the allowed cone. 

seen that 

ons, one in which the 

\vi th genvalues 

components of the 

larger eigenvalues 

correspondi 

the smaller ues (~0) will approach zero only very y. 
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As a result, (n)(~) is expected to level off after an initial 

relati y rapid with iterations" To show this effect 

the Fourier transform iteration algorithm was applied to restore 

the missing-cone components of a 2-D phantom. The reconstruction 

area is a 128 x 32 lattice. with 1 1 ice spacings in the 

x(i) and z(k) directions. The phantom has a square boundary with 

perpendicular agonals which are both 11 lattice spacin long 

in the X and z directions, respecti y. The lowed cone has a 

half-angle of 1(0.5) and is around the kx-axis. The 

Fourier components of the phantom outside the allowed cone were 

first to zero, and then the iteration scheme was employed to 

recover them. Figure 12 shows the root mean square error a of 

the reconstruction as a function of iterations; here a is defined 

as 

(i,k)) 2 

The results demonstrate the levelling off of Et(n) after an initial 

rapid with i ons. 

Figure 11 also shows that as the opening angle of the allowed 

cone ses the region of small eigenvalues grows, hence the 

truncation error is expected to increase with decrease in the 

allowed-cone angle. This behavior is clearly shown in Fi 13, 

where the root mean square error a the reconstructed image 



after 20 iterations is plotted as a function of the half-angle 

of the allowed cone the D phantom mentioned above. 

VII. EFFECTS OF THE MISSING CONE ON A POINT SOURCE 

The effect of setting the missing-cone components to zero 

on a point source has been mentioned previous papers [ ,26]. 

In Reference 24 this effect was analysed in more detail in two 

dimensions. Besides casting light on the nature the distortion 

caused by the missing cone, resul of the analysis are so use­

ful in understandi the spatial uniformity of reconstructed 

objects. 

Assume a point source is located the origin x = z = 0. 

With the Fourier components in the missing cone set to zero, the 

distorted point source p'(x,z) is given by [24] 

1 p' (x, z) -- ~~----~-=-~ 
1r 2 (tane 0 z2 - ~'"':::-

(x,z) 'f (0,0) ( 11) 

Equation (11) shows that the distortion is i ve in the 

cones lxl < tane
0

\zl9 and negative in the cones lxl > tane 0 !zl. 

In an extended object~ most of the negative distortion will be 

swamped by the positive densities 

ject. Therefore~ the use of a 

other positions in the ob-

iti ty constraint in iterations, 

i.e. resetting all negative densities to zero9 improves conver­

gence signi cantly for point sources but not for extended objects, 

as reported in [25]. 



The positive distortion in the ioo I xi < tane 0 lzl ses 

to high ve ues in immedi vicinity of the lines 

X ~ + oZ; the ve on in the region I xi > tane 0 lzl 
so becomes large near the lines. high positive and nega-

tive values give rise to what appear to four ridges originating 

from the point source and decaying with distance: two positive 

ones and negative ones bordering the lines x =! tanB 0 z. 

distortions are ngular and scontinuous in crossing the boundary 

between the positive and negative regions. These singularities 

and discon nuities are smeared out in gital Fourier trans­

formation and averaged out to small fini values. 

The distortion of a point source caused by the missing-cone 

components is shown graphically in Figure 14. The half-angle of 

the allowed cone is tan- 1 (0,5). Figure 14A shows the positive 

density distribution of the distorted point source, and Figure l4B 

shows the negative density distribution. The presence of the two 

positive and the two negative ridges originating from the point 

source. and the elongation of the point source along the z-axis 

are evident. The other smaller ridges 

point source are due to the sharp 

originating from the 

of the Fourier area. 

The positive distortion in the cones !xl < tane 0 lzl makes 

the point source appear ongated in the z direction. When the 

lf-angle e0 of the allowed cone is sma11, elongation ong the 

s (x ~ O) is especially serious. as implied in Equation (11). 



and contains most of the di ion energy of the distorted point 

source, If part or 1 of this ongation is repeatedly 

zero during i ions, convergnece will be very rapid. Thus, at 

small allowed-cone angles, convergence of the iteration scheme is 

primarily determined by whether or not the point source is located 

in a pos-ition where part or all of its elongation extends outside 

the obj boundary and thus is repeatedly reset to zero during 

iterations. 

The above scussion can be made clear by considering the 

situation in Figure 15. The 32 x 32 array is the reconstruction 

area, while the 11 x 11 square area in the middle of the array 

represents the finite extent of an object: anything outside the 

square is reset to zero during i ons. As far as the conver­

gence of the iterations is concerned, the pixel A(16,17) in 

Figure 15 is the worst location within the square boundary because 

a point source at this position has the largest fraction of its 

dges inside the square boundary, whereas pixel B(l6~ ), similar 

the pixels on the top and bottom edges, represents the 

best location since half each dge is outside the boundary 

a point source located B. For pixel C(21,17) and the 

pixles on the left and ght edges, half of each ridge is also 

ide the boundary, but all of the elongated portion is 11 

inside; thus a point source at C is not expected to much better 

than A. The above statements have been verified experimentally 
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[24], The resul show that small angles the ongated 

portion al s is the main determining con~ 

vergence i tions. and the sities in all 

the pixels are reconstructed to same fidelity~ the 

ones on the very top and bottom edges, 

As the le of the allowed cone increases, the distortion 

amplitude more out in and on t x-axis, 

As a t, more pixels near boundary 11 be recons 

better than interior pixels, However, since the convergence 

of the iteration scheme improves dly with the increase in the 

allowed-cone angle, the reconstruction error would be small evet~y-

where wi in obj boundary and thus could not cause any 

ous problem in spatial uniformity. 

VIII, COMPARISON BETWEEN DECONVOLUTION + ITERATIONS AND MATRIX 

INVERSION 

In principle, both the combined scheme of deconvolution + 

Fourier i ons and matrix inversion method are e of 

performi limited-angle recon ons, In practical applications, 

two algorithms show rather fferent characteristics, 

case of no noise or very low noise l s in the 9 the 

matrix method has advantages over the deconvolution + iterations 

algorithm. The reasons are two-fold. First, the information on 

the ni of the obj is built into the matrix method, 



so no iterations are necessary, Second, in digita·l computations 

gi on removes non-uniqueness due limited-angle 

information~ thus reconstruction is no longer a missing-cone 

problem and compl reconstruction is ble in one step with 

ther the deconvolution or the matrix method, as discussed in 

on IV. On the other hand. the ni truncation of the recon­

struction area makes the point response function space-variant in 

the z dimension. This introduces an error into the deconvolution 

algorithm but not into the matrix inversion. thereby rendering 

the missing-cone components in the deconvolution algorithm unus-

able (see . V). 

The matrix method is very ill-conditioned, i.e. unstable with 

respect to noise propagation; on the other hand, the deconvolution 

+iterations approach is quite stable [25], Therefore, when 

applied to practical data that contain significant amounts of 

noise, the deconvolution + iterations scheme gives better recon­

structions. 

The instabili es of the matrix method are especially serious 

sma 11 va 1 ues 

method is to di 

lkxl [ ], One way to stabilize the matrix 

the small lkxl components of the computation 

that contain most of the error, and, by making use of the finite 

extent of the object in the x dimension, 11 in those components 

using the ones with higher I I values through the iteration scheme 

shown in Figure 16 [25]. In this iteration scheme there is an 
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arbitrariness in the choice of the value of k0 such that a compo-

nent kx is if lkxl < k0 • After the reconstructions 

from the matrix inve1~sion are improved by this iteration procedure 

with an optimum choice of k0 • our experience has shown that their 

quality 1 about the same as that from the combined deconvolution 

+ Fourier iterations scheme. 

IX. CONCLUDING REMARKS 

Because of its stability, deconvol 'ion followed by Fourier 

transform ons is a practical way for limited-angle recon-

struction in general imaging situations where noise is not negli-

ble. The ultimate accuracy that can be attained is limited by 

the small eigenvalues of the BA operator. Since the eigenvalue 

spectrum is determined by the size of the angle of the allowed 

cone and the finite extent of the object, the fidelity of recon­

structions can only be improved if we have more a priori knowledge 

on the object other than its finite extent and location. For ex­

ample~ if it is known that an object has circular symmetry, one 

proj on will suffice to reconstruct it completely. However, 

besides the constraint positivity which has been shown be 

of li e help in reconstructing extended objects (see Sec. VII), 

no other constrain of exact nature are available for general 

objects. 

Entropy maximi on, a constraint of probabilistic nature, 



has been i y used tn image reconstruction I27 ,28], ~!e 

have inve igated the posstbiltty of ustng entropy maximi on 

for 1 imi ·1 e obj reconstruction, Our work [ 29] shows 

that the entropy difference between the object reconstructed 

using only the allowed cone information as the initial step and 

the nal object decreases rapidly at fi as we perform the 

reconstruction iterations, and thereafter very slowly, From this 

and more general arguments given in [29] we conclude that the 

entropy maximi on will not produce reconstructions than 

the methods discussed here. Furthermore, the amount of computer 

time required 

higher. 

perform the entropy maximization is considerably 
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APPENDIX A 

EVALUATION OF THE TWO-DIMENSIONAL OPTICAL TRANSFER FUNCTION 

~ 0 (kx, ) = Jrodz Joodx ~0 (x,z} exp(2Tii(kxx + k2z)) 
-oo -oo 

Now 

J""exp(2niz(kxtane + )dz = o(kxtane + kz) 
-oo 

---(A,l) 

therefore 

o(kz) e J ° F(e)de if k "" 0 
TI -eo X 

"' (A.2) 
F(e;)cos 2ei 

if kx r 0 ----~ 

nlkxl 

where tane; kz 
- - kx 
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APPENDIX B 

EVALUATION OF THE THREE-DIMENSIONAL OPTICAL TRANSFER FUNCTION 

In three dimensions~ Equation (5) kes the form 

~o z)izl 2 = H(~z) (B. 1) 

where~~ (x~y), and the angular function His positive insi 

the data cone and zero outside. Defining 1 = !Jz, ~ = (kx,ky), 

and performing the Fourier transformation, we get 

The vector 1 = (t 1 ,t2 ) can be chosen so that t 1 lies ong ~' 

giving ~ · 1 + kz = l~lt 1 + . Then we get 

~ { o(kz) JJ H(1}d
2
t 

\Po(~, kz) ~ 

f H( !~I, t2 )dt2 

if w"' 0 

~~ (B.2) 

In the particular case where ~o is in the form of a square 

pyramid, i.e., 

~ 0 .y,z) > 0 whenever 0 ~ lxl ~ !ztane 0 l 

30 



appli on (B,2) shows that 

~ ) > 0 if (jkxl + lkyl) > jk2 !/tane0 

when I I ~ I ky I > o 

or Cl I+ I j) 2:~ lk2 l/tane 0 

when lkxl = 0 or lkyl ~ 0 

"" 0 otherwise 
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APPENDIX C 

EFFECTS OF SAMPLING ¢0 (x.z) IN THE x AND z DIMENSIONS 

Let the object distribution p(_y:) be sampled in the z dimen­

sion by the sampling function: 

00 

) ~ I o ndz) 
n:::::.-oo 

The nt be sampled in the 

same way, By the convolut·ion theorem. the optical tran func-

tion ~o(z)(kx~ ) of the sampled ¢0 (x.z) is given by 

where ~0 (kx,kz) is the original optional transfer function. 

S~k2 (kz) is the Fourier transform of s6z(z). and* denotes con­

volution, Now Reference (30] shows that S~k2 (kz) is also a 

sampling function in the dimension given by 

00 

s~kz(kz) = dkz n~oo o(kz- ndkz)• ~kz ~ 6~ -~-(Co2) 

From Equations (C.l) and (C.2) we see that <ll
0 

(z)(kx.kz) is the 

superimposition of repetitions of the original ical transfer 

function in the dimension at intervals of 6k2 • Thus 

} is non-zero in the region 2lkxitanB 0 ~ ~kz; as for 

the region 2lkxltane 0 < ~ , the number of zero Fourier components 

is reduced by a factor 2. 



If sampling of ¢0 (x,z} is done in the x dimension i 

similar consi rations show that the corresponding optical trans­

fun ion w
0

(x)(kx,kz} will be non-zero everywhere. 

33 



APPENDIX D 

PROOF FOR THE POSITIVE DEFINITENESS OF THE MATRIX INTEGRAL 

OPERATOR FOR OBJECTS FINITE IN z EXTENT 

1 that the kernel of the integral operator is in the 

form: 

kxtane '))de 

For any function f(z) piece-wise continuous and spatially bounded 

---(0.1) 

Since F(e) > 0 for all -e 0 ~ e ~ 80 , the vanishing of Expression 

(D.l) would require that 

Now the integral I(kxtane) is an entire function [31]. If it is 

zero within the interval I-kxtane 0 ,kxtane 0 ], it mu be zero 

everywhere. Thus f ) must zero everywhere. This argument 

proves that the integral operator 
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FIGURE CAPTIONS 

Fig. 1. Two·~dimensional imaging ces. 

g. 2' dimensional imaging ices. 

Fig. 3. Point re onse function defined by an area element. 

Fig. 4. A two-dimensional point response function ¢ 0 (~) and i 

cal r on <I! 
0 
(~J . 

Fig. 5. A pyrami three-dimensional point response function 

¢ 0 (!:) and i function w0 (15). 

Fig. 6. inva ance the poi response function in the x 

dimension. the edges of the detection cones generated every 

point in the obj do not intersect the vertical edges of the 

reconstruction region. the point response function is space invari­

ant in the x dimension. 

Fig. 7, Undeterminacy in the matrix method. 

Fig, 8. Fourier transfonn iteration scheme for filling in missing­

cone Fourier components. 

Fig. 9, Radon transform i ration scheme for filling in missing 

projections. 

g, 10. Schematic representations of the allowed cone and the 

obj 

Fig. 11. Eigenvalues BA for a D problem for various hal 

angles a 11 owed cone. 

g. 12. Root mean square error of the reconstructed image a 

D phantom as a function the number of i ions. The half-

angle of allowed cone is tan- 1(0.5), 



Fig. 13. Root mean square error of the reconstructed image of a 

2-D phantom after 20 iterations as a function of the half-angle 

of the allowed cone. 

Fig. 14. Positive and negative density distributions of a point 

source whose missing~cone Fourier components have been to 

zero. The half-angle of the allowed cone is tan- 1 (0.5). 

Fig. 15. A 11 x 11 square boundary representing the fini extent 

of an object within a x 32 reconstruction area. 

Fig. 16. Iteration scheme to stabilize the matrix method. 
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liMITED PORTION OF ESTIMATED p( ,z). 

p( ,l at I I CORRECTED TO THOSE I 
GREATER THAN SOME > F.F.T. 

> 

F.F.T. ESTIMATED ,l ' A PRIORI INFORMATION 
CORRECTED TO ZERO OUT- ON THE EXTENT AND 
SIDE THE KNOWN EXTENT lOCATION OF THE 
OF THE OBJECT 
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